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ABSTRACT 

An algorithm was developed enabling implementation of Nosé-Hoover thermostat 

within the framework of grand canonical molecular dynamics. The proposed algorithm 

could readily be extended to mixtures of molecular species with different chemical 

potentials as shown in the paper. This algorithm was first applied to simulate an µVT 

ensemble of TIP4P water molecules at 298 K by means of a system comprising a 

number of full particles and a single scaled (fractional) particle, with the scaling factor 

considered a dynamic variable in its own right and chemical potential a preset 

parameter. Our finding showed that the scheme with a single fractional particle tended 

to freeze in metastable states as well as failed to reproduce either real-life or model-

specific chemical potential of water. In order to overcome this inadequacy the treatment 

of Pettitt and co-workers was extended to introduce multiple fractional particles. The 

extended scheme was able to reproduce the actual density of water for the driving 

chemical potential of –24.0 kJ/mol, as well that of methanol for –19.0 kJ/mol.  The 

actual behaviour of density as a function of chemical potential also agreed quite well 

with both the results of thermodynamic integration and the findings of Pettitt and co-

workers. 
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1.  INTRODUCTION 

It would be hard (if not impossible) to overestimate the importance of chemical 

potential, free energy, and other entropy-related thermodynamic functions when dealing 

with phase or chemical equilibria, as well as nonequibrium dynamics (particularly 

diffusion in multicomponent systems). It is the spatial distribution of excess chemical 

potential which ultimately governs the transport of solutes across biological bilayers [1], 

permeation of gas mixtures through carbon and silicate membranes [2,3], gas flow in 

slit-shaped micropores [4], and other interfacial phenomena. 

But unlike potential energy, pressure, temperature and various correlation functions 

which can readily be expressed as ensemble averages of pairwise additive functions, the 

calculation of chemical potential and other ‘thermal’ properties requires the estimate of 

a high dimensional integral. Decades of research effort have yielded several techniques 

suitable for computation of chemical potential and free energy. Thermodynamic 

integration, the simplest and the most reliable of these techniques, requires several 

simulations to obtain entropy-related properties of interest. Straightforward application 

of Widom’s particle insertion method [5,6] is known to fail at high densities due to poor 

sampling. Various versions of cavity-biased insertion technique were used by several 

authors to overcome the sampling problem for water and other dense liquids [1,7,8]. 

Or alternatively, chemical potential could be treated as a controlled variable with the 

number of molecules becoming a dynamic variable. Depending on the starting N-

constant system the ‘conjugate’ one can take the form of either grand canonical (µVT) 

or µPT ensemble.  
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2.  SYSTEMS DRIVEN BY CHEMICAL POTENTIAL GRADIENT: 

APPROACHES AND SIMULATION SETUPS 

Earlier simulations of flux in slit pores and diffusion of gas through micro- and 

nanopore membranes [2,3,4,9] used the recipes of grand canonical Monte Carlo to 

control the chemical potential in two control volumes. Their hybrid GCMC-molecular 

dynamics (GCMC/MD) scheme employed two types of moves: stochastic MC moves 

which aimed to adjust the density in control volumes, and dynamic ones providing the 

mass transport across the system. Typical hybrid Monte Carlo-molecular dynamics 

approaches suffer from two drawbacks. First, they call for insertion of a fully-fledged 

molecule, and the acceptance probability of such a step will be quite low for dense 

fluids (as witnessed by poor sampling of Widom’s particle insertion which makes it fail 

in case of water) thus increasing drastically the number of necessary attempts. Second, 

and the most important, disadvantage lies in the fact that if the insertion step is accepted, 

the newly created particle is assigned a velocity drawn from Maxwell’s distribution. In 

one of the references [4] the particle was also assigned a streaming velocity calculated 

from averaged previous flux, which raises the problem of self-consistency. Given the 

relatively small size of control volumes and the possibility of several particles being 

created or deleted within just a few time steps, there are no guarantees against 

GCMC/MD procedure completely destroying the dynamics of the system and thus 

defeating the purpose of the exercise - simulating mass transport driven by the gradient 

in chemical potential. In case of the pure grand canonical MD the newly created almost-

zero particle is assigned zero velocity, the system is undisturbed, and the fledgling 

particle is free to probe its surrounding and gain appropriate velocity. Playing the devil’s 
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advocate we must point out that the advantage of the MC scheme lies in the fact that 

while any straightforward application of grand canonical MD relies on the ensemble’s 

intrinsic responses to correct the possible density deviation in the control volumes, the 

hybrid GCMC/MD technique allows to tailor the ratio between stochastic and dynamic 

steps to match the system’s dynamics. 

Application of the relationship between density and chemical potential allows using 

both GCMC/MD and GCMD to calculate chemical potential in model single-component 

systems of interest (e. g. [11,12]). The application of the schemes to interface systems 

could follow the general setup suggested in [3,9]. One possible way to overcome the 

problem of slow response of pure GCMD mentioned earlier will be to take a leaf out of 

hybrid technique’ book and periodically freeze the entire system outside the control 

volumes (the distance between them insures that they don’t affect each other). While the 

GCMD steps are executed in two control volumes, the rest of the system is treated as 

static background. Full and fractional particles alike are confined to control volumes. In 

between the grand canonical steps it is the number dynamics that will be put on hold, 

with the fractional particles bouncing from the control volume walls in z-direction. 

3.  GRAND CANONICAL MOLECULAR DYNAMICS: GENERAL 

SCHEME AND IMPLEMENTATIONS 

Grand canonical MD proposed in a series of papers by Pettitt and co-authors (see 

11,12,13 and references therein) is implemented by introducing an additional dynamic 

variable, the number of particles. At any given moment, this number could be written as 

N+ζ, where N is integer and stands for full particles, while ζ determines the degree of 
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presence of a fractional particle. Following Pettitt, we have defined ζ as a coefficient 

used both to scale linearly the interaction between the fractional particle and the full 

particles, as well as its contribution to the system’s kinetic energy. It could be shown 

[10,11,12] that both scalings give rise to additional terms in the open system 

Hamiltonian and equations of motion. In [13] a version of the grand canonical molecular 

dynamics was used to implement a Gibbs ensemble for truncated and shifted Lennard-

Jones fluid. The Gibbs ensemble specifics imply additional constraints on the fractional 

particle dynamics (fractional particles in two different phases must add up to unity) as 

well as presence of additional volumes-dependent terms in the equations. Still, provided 

the asymmetric starting densities in the two compartments, the Gibbs ensemble 

molecular dynamics algorithm successfully reproduced the results obtained using Gibbs 

ensemble Monte Carlo simulation [13]. 

The Hoover formulation of Nosé-Hoover thermostat [14,15] was implemented where 

one starts from a set of coupled equations of motion rather than a Hamiltonian: 
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Above equations have been extended to a mixture of different molecules and several 

fractional particles (subscript f), with subscript a indicating the molecular species; x - 

COM coordinates; U - unscaled potential interaction; mv - unscaled translational 

momenta; j - unscaled angular momenta; F - scaled forces; t - scaled torques; I - 

moment of inertia tensor; w  - angular velocity related to angular momentum by w  = I-

1j; )w - transposed body-centred angular velocity augmented by a zero to form a four-

component vector; q = [q0, q1,q2,q3]
T - four-component quarternion representing the 
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orientation of the molecule [16]; Q - matrix (6c) of [17]; Ttr and Trot - required 

translational and rotational temperatures; ηtr and ηrot - translational and rotational 

friction parameters of Hoover formulation [15], Xtr and Xrot - number of respective 

degrees of freedom, Qtr and Qrot - thermostat masses determining response times; W is 

an adjustable masslike parameter similar to thermostat masses (ranging in hundreds of 

kJ.ps2/mol in our case), µex - excess chemical potential. 

Ref. [10-12] used pure Nosé thermostatting that necessitates some sort of RATTLE 

algorithm to handle the holonomic constraints. Our application of quarternion scheme 

requires us to control two loosely coupled temperatures (translational and rotational) and 

thus two separate thermostats. In our previous work [8] we have analysed the effect of 

Nosé-Hoover thermostat parameters in terms of system’s ergodicity and potential errors 

in chemical potential profiles. Tight thermostatting resulted in a non-ergodic system 

with the chemical potential shifted by about 0.8 kJ/mole (the corresponding change in 

potential energy was much less pronounced). And while overly ‘loose’ thermostats will 

ultimately yield correct results in the case of an NVT ensemble the long-term 

fluctuations in potential energy might affect the grand canonical number dynamics in an 

unpredictable way. 

Coupled equations (1-12), already containing quarternions and ‘friction’ coefficients, 

are complicated still further by grand-canonical variable, ζ(t), the degree of presence of 

the fractional particle. To solve the equation set we have modified the implicit 

quarternion scheme of [16] for a thermostat formulation [18]. Time step was 0.5 fs, with 

the reasons for choosing such short a timestep outlined elsewhere [8]. 
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4.  RESULTS AND DISCUSSION 

Figures 1 and 2 show the results of applying the grand canonical molecular dynamics 

scheme of [10-12] modified for Nose-Hoover thermostat [14,15] to simulation of model 

water system driven by different chemical potentials. A µVT ensemble of rigid TIP4P 

water molecules [19] was investigated at 298K. Under standard conditions our periodic 

cell should contain 108 water molecules corresponding to the density of 0.998 g/cm3. As 

it could also be seen from figure 1, for quite a long time following the equilibration 

period both single-particle systems seemed to reach a steady state. Note that the 

chemical potential-density curve (increase in chemical potential bring the decrease in 

density) on this plateau agreed with the findings of both thermodynamic integration and 

GCMD [12,20]. But then the number of molecules in the system held at µ=-23.00 

kJ/mol went up from 107 to 115 and so far appears to stay there. This behaviour can be 

compared to the time history in figure 2 of [11] where a system holding steady at about 

132 LJ particles for 200 ps suddenly climbed up by almost 10 particles and then went 

down to about 135 particles. This pattern may reflect the inherent tendency of the 

present grand canonical MD scheme to freeze in metastable states. It also becomes 

apparent from figure 1 that no driving chemical potential reasonably close to the real-

life one was able to reproduce the actual density of water. 

It was our belief that this failure could be linked to the inadequacy of a single fractional 

particle as chemical potential ‘probe’. Feeling the need for a more robust and responsive 

approach we have extended the treatment of Pettitt and co-workers to introduce multiple 

fractional particles. Figure 2 shows the number of particles dynamics for a system with 

four fractional particles, with the time evolution of each one governed by its own eq. 12. 
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Just as in the case of a single fractional particle, only full particles are counted when the 

‘number of particles’ is considered. A closer look at eq. 12 shows that the number 

acceleration of the just created particle (with an almost-zero fraction) can be highly 

negative, which raises doubts whether the scheme will ever allow the particle to survive 

after creation. With this concern in mind we should draw the reader’s attention to the 

curve of figure 2 corresponding to µex=-22.40 kJ/mol (Curve 3), it demonstrates that the 

system can generate particles at a runaway rate when driven to do so by external 

chemical potential. Curve 2 of figure 2 shows that when the initial density does not 

match the desired chemical potential the system’s response is first to ‘exacerbate’ the 

situation during the early stages of its equilibration. This response seems to be shared by 

constant-µ systems simulated by Pettitt and co-workers. 

Exploring the range of chemical potential we have discovered a rather sharp ‘cut-off’ to 

the left of its physical value at 298 K. When the driving chemical potential is set below -

24.3 kJ/mol, sooner or later the system undergoes a downward density fluctuation from 

which it never recovers (see the plunge in figure 3). This behaviour could be compared 

to that of Curve 2 in figure 2, one could see that systems at µex=–23.50 and –24.00 

kJ/mol did bounce back from fluctuations comparable in absolute depth. In our opinion 

the difference lies in the fact that though quite dramatic, the downward fluctuations at 

higher potentials never result in overall densities that could led to non-uniform changes 

in local densities described in [21] (compare figure 3 (a) and (b) of this ref.). When 

confronted with the cavitation effect, present insertion scheme will allow the new 

particle to be created at the outskirts of high-density regions rather than in the middle of 

empty ones, and the new particle will probably never survive the vaporisation. 
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Average potential energies of the two ‘4-particle’ systems were calculated by averaging 

over interactions of both full and fractional particles. We should note that the difference 

in potential energies was consistent but small (about 0.25 kJ/mole). And since the 

difference is much less than that between the driving chemical potentials, it underlines 

even further the importance of entropy contribution and thus raises the whole issue of 

system’s ergodicity [8].  

Furthermore, we have found that the slope of potential energy-density curve is not steep 

in the 90 through 120 particles interval.  Consider figure 4 showing the per-particle 

potential energy and the number of particles less their respective run-time averages. In 

general, though the Coulomb contributions to the net potential energy clearly dominate 

(–4812 kJ/mol versus +796 kJ/mol in terms of total potential energy), particle 

fluctuations are in a counterphase with the energy, a behaviour expected from a purely 

Lennard-Jones system to the right of energy minimum. This fact could also explain that 

though not totally conclusive at this point, our findings agree with those of [12,20] in 

the part that the increase in chemical potential resulted in the decrease of density. The 

lowest of stable chemical potentials, –24.2 kJ/mole, corresponded to the highest density, 

while µex = –22.9 kJ/mol resulted in density slightly lower than the physical one. 

The applicability of developed four-particle scheme has been tested further on a 

methanol system with 3-site potential from [22] at 298K and density 0.786 g/cm3 (see 

Figure 5 for potential energy) . Figure 6 presents density fluctuations at three different 

driving chemical potentials. Curve a corresponds to chemical potential for the model 

employed (–19.0 kJ/mol, estimated by us through thermodynamic integration); curves b 

and c test the system’s sensitivity to chemical potential deviations. One can see that 



 12

while density of systems c and b has responded to non-physical at chemical potentials 

by going, respectively, up and down, system a appears to be holding steady at nearly 

physical density.  

5. CONCLUSION 

Our modification of the grand canonical molecular dynamics of Pettitt and co-workers 

[10-12] enables a constant-temperature dynamics with multiple Nosé-Hoover 

thermostats. As such, it opens the possibility of using quarternion treatment for rigid 

molecules (with translational and rotational temperatures controlled by separate 

thermostats) rather than limiting the choice to SHAKE/RATTLE-like algorithms. 

The results for single fractional particle show slow equilibration and a tendency of the 

system to get stuck in metastable states for long periods of time, traits apparently shared 

by constant-µ systems simulated by Pettitt and co-workers [see fig. 2 of ref.11]. We 

concluded that though a single fractional particle may be suitable for calculation of 

chemical potential in homogenous systems, its extremely slow and uncertain response 

makes it a poor candidate for implementation of multicomponent interfacial systems. 

Our ongoing investigation into an open system featuring four fractional particles shows 

much more promise. The equilibration period is shorter and the number of particles 

appears to be more stable and not prone to freezing in metastable configurations. The 

feasibility of the scheme is confirmed further by investigating an open methanol system. 

It is our belief that a ‘four-particle’ scheme could be used to control chemical potential 

for both homogenous and interfacial systems.  



 13

REFERENCES 

1. A. Pohorille and M.A. Wilson, 1996, J. Chem.  Phys.   104, 3760.   

2. S. Furukawa, T. Shigeta, and T. Nitta, 1996, J. Chem. Eng. Jpn. , 29, 725. 

3. P.I. Pohl, G.S. Heffelfinger, and D.M. Smith, 1996, Molec. Phys. , 89, 1725. 

4. R.F. Cracknell, D. Nickolson, and N. Quirke, 1995, Phys.  Rev.  Lett. , 74, 2463. 

5. B. Widom, 1963, J. Chem. Phys. , 39, 2808. 

6. B. Widom, 1982, J. Chem. Phys. , 86, 869. 

7. Y. Tamai, H. Tanaka, and K. Nakahashi,1995, Fluid Phase Equilibria, 104, 363. 

8. Kuznetsova ,T. and Kvamme, B., 1999, Molecular Simulation, 21,  205-225. 

9. G.S. Heffelfinger and F. van Swol, 1994, J. Chem.  Phys. , 100, 7548. 

10. T. Çagin and B.M. Pettitt, 1991, Molecular Simulation, 6, 5. 

11. S. Weerasinghe and B.M. Pettitt, 1994, Molec. Physics, 82, 897. 

12. C.G. Lynch and B.M. Pettitt, 1997, J. Chem. Phys. , 107, 8594. 

13. B.J. Palmer and C. Lo, 1994, J. Chem. Phys. , 101, 10899. 

14. S. Nosé, 1991, Progr.  Theor.  Phys. , 103, 1.  

15. W.G. Hoover, 1985, Phys. Rev. A, 31, 1695.  

16. D. Fincham, 1992, Molecular Simulation, 8, 165. 

17. M.P. Allen and D.J. Tildesley, 1990, Computer Simulation of Liquids (Clarendon 

Press, Oxford), 86-90. 

18. S. Toxvaerd, 1991, Molec. Phys. , 72, 159. 

19. W.L. Jorgensen, 1982, J. Chem. Phys. , 77, 4156. 

20. J. Hermans, A. Pathiaseril, A. Anderson, 1988, J.  Amer.  Chem.  Soc., 110, 5982. 

21. M.E. Parker, and D.M. Heyes, 1998, J.  Chem.  Phys. , 108, 9039.  



 14

22. W.L. Jorgensen, 1983, J. Chem. Phys. , 79, 926. 



 15

 

FIGURE CAPTIONS 

Figure 1. Number of full particles for several driving chemical potentials in case of a 

single fractional particle (TIP4P water). 

Figure 2. Number of full particles in case of 4 fractional particles (TIP4P water). 

Figure 3. Number fluctuation leading to the system breakdown in case of  

µex = –25.00 kJ/mol (TIP4P water). 

Figure 4. Fluctuations in potential energy and the number of particles for  

µex = –24.00 kJ/mol (TIP4P water). 

Figure 5. Methanol potential energy vs. inverse temperature at ρ = 0.786 cm/cm3. 

Figure 6.  Number of full particles for three different chemical potentials, methanol 

system at 298 K. Straight line is experimental density.
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